The First Example of a Cycloocta-1,3-diene Ligand Bound to Rhodium; Crystal Structures of $Rh(\eta^{5}-C_{5}Ph_{5})L$ (L = 1,3- or 1,5-C₈H₁₂)

Julie Baghdadi, Neil A. Bailey, Adrian S. Dowding and Colin White*

Department of Chemistry, The University, Sheffield S3 7HF, England

Under reducing conditions $[Rh(\eta^5-C_5Ph_5)Br_2]_2$ reacts with either cycloocta-1,3- or -1,5-diene to give predominantly $Rh(\eta^5-C_5Ph_5)(1,3-C_8H_{12})$ 1 together with a small amount ($\leq 15\%$) of $Rh(\eta^5-C_5Ph_5)(1,5-C_8H_{12})$ 2.

It is well established that the substituents on a cyclopentadienyl ligand can markedly influence the properties of metal complexes. We present herein a spectacular example involving the pentaphenylcyclopentadienyl ligand.

The structures of over 130 rhodium compounds containing a cyclooctadiene ligand have been determined;¹ hundreds of other rhodium cyclooctadiene complexes are known.² To our knowledge all contain the cycloocta-1,5-diene isomer and

none contain the more thermodynamically stable cycloocta-1,3-diene. This exclusive tendency to coordinate the 1,5isomer is borne out by reports describing how cycloocta-1,3or -1,4-diene when treated with rhodium compounds yields complexes containing cycloocta-1,5-diene.^{3,4} Most other group VIII metals resemble rhodium in commonly bonding to the 1,5-isomer although $M(1,3-C_8H_{12})Cl_2$ (M = Pd or Pt)⁴ have been isolated and $Co(C_5H_5)(1,3-C_8H_{12})$ has been gener-

Fig. 1 Structure of (*a*) Rh(C₅Ph₅)(1,3-C₈H₁₂) **1**, (*b*) Rh(C₅Ph₅)(1,5-C₈H₁₂) **2**. Selected bond lengths (Å) and angles (°): **1**, Rh–C(36) 2.119(26), Rh–C(37) 2.110(24), Rh–C(38) 2.103(22), Rh–C(39) 2.202(30), Rh–Cp_{plane} 1.894, C(36)–C(37) 1.339(38), C(37)–C(38) 1.465(34), C(38)–C(39) 1.348(34); C(37)–C(36)–C(43) 127.3(26), C(36)–C(37)–C(38) 122.1(22), C(37)–C(38)–C(39) 122.6(23), C(38)–C(39)–C(40) 131.9(25), C(39)–C(40)–C(41) 113.1(31). **2**, Rh–C(36) 2.129(13), Rh–C(37) 2.051(14), Rh–C(40) 2.093(11), Rh–C(41) 2.110(10), Rh–C(37) 1.258, C(36)–C(37) 1.318(19), C(37)–C(38) 1.515(21), C(38)–C(39) 1.485(24), C(40)–C(41) 1.327(20); C(43)–C(36)–C(37) 125.1(13), C(36)–C(37)–C(38) 125.8(11), C(37)–C(38)–C(39) 111.3(12), C(38)–C(39)–C(40) 114.2(11), C(39)–C(40)–C(41) 119.3(12), C(40)–C(41)–C(42) 128.0(13).

ated in solution.⁵ This contrasts, with the case of iron in which not only are there several examples of cycloocta-1,3-diene complexes *e.g.* $Fe(1,3-C_8H_{12})(CO)_2(PPh_3)^6$ but $Fe(CO)_5$ catalyses the isomerisation of the 1,5- to the 1,3-isomer.⁷

We report that when $[Rh(C_5Ph_5)Br_2]_2$ is stirred for 15 h at room temperature with cycloocta-1,3-diene in ethanol containing Na₂CO₃, Rh(C₅Ph₅)(1,3-C₈H₁₂) **1** is formed together with *ca*. 7% of Rh(C₅Ph₅)(1,5-C₈H₁₂) **2**. The cycloocta-1,3diene product is an orange-yellow air-stable solid, which shows no tendency to isomerise to the corresponding 1,5compound when heated. When the reaction is repeated with cycloocta-1,5-diene, some (*ca*. 15%) Rh(C₅Ph₅)(1,5-C₈H₁₂) is formed but the major product is again **1**. A pure sample of Rh(C₅Ph₅)(1,5-C₈H₁₂) **2** was synthesized by treatment of [Rh(1,5-C₈H₁₂)Cl]₂ with Li(C₅Ph₅). Complex **2** shows no tendency to isomerise to the corresponding 1,3-complex when heated.

The crystal structures of both 1 and 2 (Fig. 1)[†] reveal that the unsaturated bonds of both cyclooctadiene ligands are extremely short *i.e.* mean C=C 1.343(36) and 1.322(19) Å, respectively; this compares with 1.341 Å in free cycloocta-1,5diene⁸ and reflects the fact the C₅Ph₅ ligand is not a significant electron donor.9 The other bond lengths and angles are not significantly different from those in related structures e.g. Fe(1,3-C₈H₁₂)(CO)₂(PPh₃)⁶ and $Rh(C_5H_4CO_2Me)(1,5-$ C₈H₁₂).¹⁰ There are no significant intramolecular interactions in either 1 or 2 and it is not apparent from the crystal structures as to why 1 should be unique in containing a stable rhodium- $(1,3-C_8H_{12})$ ligand. We note, however, that in certain solvents the cyclooctadiene prefers to bond in the 1,3-form in the 19-electron radical anion $Co(C_5H_5)(C_8H_{12})^{-1}$ although in the neutral complex the 1,3-C8H12 ligand rapidly isomerises to the 1,5-isomer.⁵ Given the known tendency of the C₅Ph₅ ligand to stabilise radical species¹¹ and the reducing conditions under which 1 is formed, we suggest that 1 results from a related 19-electron intermediate and that the unprecedented rhodium- $(1,3-C_8H_{12})$ is then trapped since interconversion between 1 and 2 clearly has an activation barrier greater than that for the $Co(C_5H_5)$ analogues. Electrochemical experiments are in progress to test these suggestions.

Received, 12th September 1991; Com. 1/04742F

References

- 1 For details consult the Cambridge Crystallographic Data Centre.
- 2 R. S. Dickson, Organometallic Chemistry of Rhodium and Iridium, Academic Press, New York, 1983.
- 3 R. E. Rinehart and J. S. Lasky, J. Am. Chem. Soc., 1964, 86, 2516; K. M. Moseley, J. W. Kang and P. M. Maitlis, Chem. Commun., 1969, 1155.
- 4 H. A. Tayim and F. T. Mahmoud, J. Organomet. Chem., 1975, 92, 107.
- 5 J. Moraczewski and W. E. Geiger, Jr., J. Am. Chem. Soc., 1981, 103, 4779.
- 6 J. Ioset, L. Helm, A. Merbach, R. Roulet, F. Grepioni and D. Braga, *Helv. Chim. Acta*, 1988, **71**, 1458.
- 7 J. E. Arnet and R. Pettit, J. Am. Chem. Soc., 1961, 83, 2954.
- 8 P. A. Tucker, W. Scutcher and D. R. Russell, Acta Crystallogr.,
- Sect. B, 1975, 31, 592 and references cited therein.
 9 H. Adams, N. A. Bailey, A. F. Browning, J. A. Ramsden and C.
- White, J. Organomet. Chem., 1990, 387, 305.
 10 M. Arthurs, S. M. Nelson and M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1977, 779.
- 11 N. G. Connelly, W. E. Geiger, G. A. Lane, S. J. Raven and P. H. Reiger, J. Chem. Soc., Dalton Trans., 1987, 467.

† Selected spectroscopic data: 1 δ_{H} (250 MHz, CDCl₃) 1.2 (2H, m, CH₂), 1.45 (2H, m, CH₂), 1.8 (2H, m, CH₂), 2.0 (2H, m, CH₂), 3.55 (2H, s, CH), 4.65 [2H, d, J(RhH) 5.0 Hz], 7.0 (25H, m, C₅Ph₅); δ_{C} (250 MHz, CD₂Cl₂) 134.9, 132.4, 127.5, 126.4, (Ph₅), 104.3 [C₅, d, J(RhC) 5.1 Hz], 84.5 [2C, d, J(RhC), 5.8 Hz, CH], 61.7 [2C, d, J(RhC) 17.8 Hz, CH], 28.7 (2C, s, CH₂), 25.4 (2C, s, CH₂). 2 δ_{H} (250 MHz, CDCl₃), 2.0 (4H, q, CH₂), 2.4 (4H, q, CH₂), 3.7 (4H, s, CH), 7.0 (25H, m, C₅Ph₅); δ_{C} (250 MHz, CD₂Cl₂) 135.0, 132.6, 127.7, 126.5 (Ph₅), 105.8 [C₅, d, J(RhC) 3.7 Hz], 74.8 [d, J(RhC) 14.4 Hz, CH], 32.5 (s, CH₂).

Crystal data: 1, C₄₃H₃₇Rh; *M* = 656.67; crystallises from dichloromethane-hexane as orange-yellow plates. Orthorhombic, *a* = 14.491(7), *b* = 20.728(12), *c* = 21.802(11) Å, *U* = 6549(6) Å³; D_c = 1.332 g cm⁻³, *Z* = 8. Space group *Pbca* (*D*_{2*h*})¹⁵, No. 61). Mo-Kα radiation (λ = 0.71069 Å), μ(Mo-Kα) = 5.40 cm⁻¹, *F*(000) = 2719.69; *R* = 0.0900 (1596 reflections). **2**, C₄₃H₃₇Rh, *M* = 656.67; crystallises from dichloromethane-hexane as yellow plates (0.14 × 0.40 × 0.30 mm). Monoclinic, *a* = 18.977(12), *b* = 10.246(6), *c* = 34.650(16) Å, β = 109.75(4)°, *U* = 6341(6) Å³; *D_c* = 1.376 g cm⁻³, *Z* = 8; space group *C*2/*c* (*C*_{2*h*}⁶, No. 15); Mo-Kα radiation (λ = 0.71069Å), μ(Mo-Kα) = 5.58 cm⁻¹, *F*(000) = 2719.69; *R* = 0.0800 (2872 reflections).

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.